Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A113. La séquence des multiples des nombres premiers
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A113. La séquence des multiples des nombres premiers Imprimer Envoyer
computer.png  calculator_edit.png   
On considère les entiers naturels commençant par 4 chiffres ABCD et se prolongeant par les entiers à 4 chiffres de la forme BCDE,CDEF,DEFG,...ou à 3chiffres si B est nul dans BCDE ou si C est nul dans CDEF.... tels que chacun d'eux soit un multiple d'un même nombre premier p.

Quelles sont les séquences les plus longues pour p = 11, 13, 17, 19,23,29,31,37? Quelles séquences aboutissent à des boucles?

Source : d'après Mathpuzzle.com (avril 2004)


p=11 la séquence est une boucle de 5 termes 1122 ,1221,2211,2112 et de nouveau 1122 ou encore en admettant qu'elle peut dégénérer en des nombres à 3 ou 2 chiffres : 1001,11,110,1100 et de nouveau 1001.

p=13 la séquence est une boucle de 13 termes : 1196, 1963, 9633, 6331, 3315, 3159, 1599, 5993, 9932, 9321, 3211, 2119 et de nouveau 1196 ou encore en admettant qu'elle peut dégénérer en des nombres à 3 ou 2 chiffres :1001, 13, 130, 1300, 3003, 39, 390, 3900, 9009, 91, 910, 9100 et de nouveau 1001

p=17 la séquence la plus longue est de 8 termes : 9996, 9962, 9622, 6222, 2227, 2278, 2788, 7888

p=19 la séquence la plus longue est aussi de 8 termes : 7771, 7714, 7144, 1444, 4446, 4465, 4655, 6555

p=23 la séquence la plus longue est de 9 termes en admettant qu'elle peut dégénérer en des nombres à 3 chiffres: 3404, 4048, 483, 4830, 8303, 3036, 368, 3680, 6808

p=29 la séquence la plus longue n'a plus que 4 termes : 4553, 5539, 5394, 3944

p=31 la séquence la plus longue est de 9 termes en admettant qu'elle peut dégénérer en des nombres à 3 chiffres : 7099, 992, 9920, 9207, 2077, 775, 7750, 7502, 5022

p=37 ce nombre premier se caractérise à la fois par une boucle très courte 4033,333 et une séquence de 5 termes : 4884, 8843, 8436, 4366 et 3663 .On peut aussi mentionner une séquence où figurent des nombres à 4 puis 3 et enfin 2 chiffres : 4070, 703, 37, 74.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional