Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A1975. Deux brins dans une botte de foin
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A1975. Deux brins dans une botte de foin Imprimer Envoyer
computer.png calculator_edit.png  

Dans une botte de foin faite de brins numérotés de 1 à 1000000 (un million),dénicher deux brins dont les numéros p et q sont tels que pour tout entier n >0, les nombres p.2n + 1 et q.2n  -  1  ne sont jamais premiers.On essaiera de trouver les deux brins les plus proches possibles.



Jean Moreau de Saint Martin a résolu le problème et trouvé les deux brins les plus proches p = 690632 et q = 777149.
A noter que ce problème fait appel aux nombres de Sierpinski de la forme p.2n + 1 et aux nombres de Riesel de la forme q.2n - 1. On peut consulter http://fr.wikipedia.org/wiki/Nombre_de_Sierpinski
et http://fr.wikipedia.org/wiki/Nombre_de_Riesel.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional