Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A1969. Des diviseurs à la pelle
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A1969. Des diviseurs à la pelle Imprimer Envoyer
calculator_edit.png  

Q1- Cet entier A a exactement 40000 diviseurs qui sont strictement supérieurs à 1. Prouver que A est le carré d'un carré parfait.

Q2- Cet autre entier B est de la forme 2n + 1 avec n égal au produit de 10 nombres premiers distincts strictement supérieurs à 3. Prouver que B a plus d'un million de diviseurs.


Jean Moreau de Saint Martin,Daniel Collignon,Patrick Gordon et Philippe Laugerat ont répondu aux deux questions.
Par ailleurs Daniel Collignon signale que la deuxième question est un problème qui figure dans la liste finale retenue pour les Olympiades Internationales de Mathématiques de 2002.
Le résultat peut être étendu à 2^(2^n-1) diviseurs à l'aide des
polynômes cyclotomiques.
Références :
http://www.artofproblemsolving.com/Wiki/index.php/2002_IMO_Shortlist_Problems/N3
http://www.ajorza.org/wimo/images/mathfiles/files/imoshortlist/scansod/imo2002s_sol.pdf
http://www.artofproblemsolving.com/Forum/viewtopic.php?t=17326

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional