Small Fonts Default Fonts Large Fonts

Plus de 2000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
A484. Un lieu diophantien Imprimer Envoyer
A4. Equations diophantiennes
calculator_edit.png  

D'après un problème proposé par Patrick Gordon
Dans un repère orthonormé (x’0x,y’Oy), on trace un carré ABCD de centre O dont le sommet A de coordonnées entières (k, k) est situé sur la bissectrice du quadrant xOy et le sommet C est le symétrique de A par rapport à O.
Pour un point M quelconque du plan, on calcule la somme s = aMA² + bMB² + cMC² + dMD² dans laquelle a, b, c et d sont quatre entiers naturels positifs.
1)Démontrer que lorsque s est un constante, le lieu de M est un cercle (C) dont on précisera le centre et le rayon en fonction des paramètres k, a, b, c, d et s.
2)Avec a = 3, b = 8 et un cercle (C) de rayon R = 2012 passant par le sommet A, donner au moins deux dimensions possibles du côté du carré ABCD.



Jean Moreau de Saint Martin,Philippe Laugerat,Maurice Bauval,Paul Voyer,Claudio Baiocchi,Pierre Henri Palmade et Patrick Gordon ont résolu le problème. Contrairement à ce que pourrait laisser croire une analyse rapide, le nombre de dimensions possibles du côté du carré ABCD est largement supérieur à 2. Jean Moreau de Saint Martin et Philippe Laugerat en ont respectivement recensé 20 et 18 et ils admettent que leurs décomptes ne sont pas exhaustifs...
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional