Small Fonts Default Fonts Large Fonts

Plus de 2000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
A367. Les entiers font de la résistance Imprimer Envoyer
A3. Nombres remarquables

calculator_edit.png  

Un entier N de k chiffres (k ≥ 1) est appelé "résistant" si la différence d(N,k) entre lui-même et la somme des puissances d'ordre k de ses chiffres est strictement positive.
Par exemple 12 est résistant car 12 − 12 −22 = 7 > 0. A l'inverse 256 ne l'est pas car 256 − 23 − 53 − 63 = − 93 < 0
Q1 Pour chacune des valeurs de k variant de 1 à 10, déterminer le ou les entiers N tels que d(N,k) est maximal.
Q2 Démontrer qu'il existe un entier N₀ tel que tous les entiers ≥ N₀ sont résistants. Pour les plus courageux, déterminer le plus petite valeur possible de N₀.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional