Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A159. Les lézards verts et les caméléons de Diophante
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A159. Les lézards verts et les caméléons de Diophante Imprimer Envoyer
computer.png calculator_edit.png  

Diophante a une belle collection de cent lézards verts de la vallée du Nil : 31 parmi eux ont une couleur vert amande (VA), 34 une couleur vert bronze (VB) et les 35 restants une couleur vert-de-gris (VG). Ils les réunit tous dans un vivarium mais il a oublié que lorsque deux lézards de couleurs différentes se rencontrent, ils prennent la troisième couleur. Quelques heures plus tard, il observe que les lézards ont tous la même couleur. Quelle est cette couleur ?


Si Diophante ajoute dans le vivarium 1 lézard vert amande, que va-t-il observer ? Que se passe-t-il avec 2 lézards vert-de-gris de plus au lieu du lézard vert amande ?


Abandonnant sa collection de lézards devenus monocolores, Diophante installe dans le vivarium huit caméléons dont un de type A, cinq de type B, un de type C et un de type D. Lorsque un caméléon de type A rencontre un caméléon de type B, cela donne deux caméléons de type C tandis que B+C donnent 2D, C+D donnent 2A et D+A donnent 2B. Les autres rencontres possibles (A+C, B+D et évidemment A+A, B+B, C+C, D+D) ne donnent lieu à aucun changement.


Quelques heures plus tard, Diophante constate que les huit caméléons sont tous de même type. Quel est ce type ? Il renouvelle l'expérience toujours avec 1A, 5B, 1C et 1D. Cette fois-ci, il observe une situation d'équilibre dans laquelle il n'y a pas de caméléon de type D. Quelle est cette situation d'équilibre ?


Il fait une troisième expérience avec 1A, 1B, 4C, 2D. Il observe une situation d'équilibre avec 3 caméléons de type A. Que peut-on en conclure ?



 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional