Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A148. La moyenne arithmétique mène à tout
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A148. La moyenne arithmétique mène à tout Imprimer Envoyer
calculator_edit.png  

On considère une liste de k nombres distincts entre eux. On peut ajouter à cette liste un (k+1)-ième terme qui est la moyenne arithmétique de tout ou partie des k nombres à la seule condition que celle-ci soit différente de ces k nombres. L’opération peut être répétée autant de fois qu’on le désire.

On part du couple [0,1]. Comment obtenir (si possible en un minimum d’opérations) les fractions :

1)      7 / 15 ? (score de 11 opérations à améliorer)

2)      17 / 31 ? (score de 39 opérations à améliorer)

3)      2004 / 2005 ?

D’une manière générale, trouver une méthode pour obtenir la fraction p/q avec p et q entiers premiers entre eux tels que 0 < p < q.

Source : d’après olympiades russes de mathématiques


 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional