Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A1609. Rendez-vous chez les psy
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A1609. Rendez-vous chez les psy Imprimer Envoyer

calculator_edit.png  

Pour tout entier n strictement positif, la fonction Ψ(n) est égale à somme des plus grands communs diviseurs (PGCD) de l’entier n et des entiers k, k variant de 1 à n.
En d’autres termes, si (n,k) désigne le PGCD de n et de k,a1609
Par exemple Ψ(4) = 1 + 2 + 1 + 4 = 8 et Ψ(5) = 1 + 1 + 1 + 1 + 5 = 9

 

Q1 Calculer Ψ(n) pour n variant de 1 à 25.[*]
Q2 Démontrer que si p et q sont deux entiers relativement premiers entre eux Ψ(p.q) = Ψ(p).Ψ(q).[**]
Q3 Calculer Ψ(2024) et trouver trois entiers a,b,c ,a ≠ b ≠ c ≠ 2024, tels que Ψ(a ) = Ψ(b) = Ψ(c) = Ψ(2024).[***]
Q4 Prouver que pour tout entier m ≥ 1, l’équation Ψ(x) = mx a toujours au moins une solution en x.
Prouver que l’équation Ψ(x) = 2024x a au moins deux solutions en x et donner la condition nécessaire et suffisante sur m pour que l’équation Ψ(x) = mx ait une seule solution.[***]

 

 

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional