Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A1795. La saga de Méphisto (5ème épisode)
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A1795. La saga de Méphisto (5ème épisode) Imprimer Envoyer

calculator_edit.png computer.png  

Soient φ(n) l’indicatrice d'Euler qui à tout entier naturel n non nul associe le nombre d'entiers compris entre 1 et n et premiers avec n et σ(n) la fonction sigma qui est la somme des diviseurs positifs de n.
Q1 Pour tout entier k > 1, prouver qu’il existe une suite strictement croissante de k entiers positifs
n1 < n2 < n3 < ....< nk telle que la suite correspondante φ(ni) soit strictement décroissante :φ(n1) >φ(n2) > φ(n3) > .......> φ(nk).

Q2 Pour tout entier k > 1, prouver qu’il existe une suite strictement croissante de k entiers positifs
n1 < n2 < n3 < ....< nk telle que la suite correspondante σ(ni) soit strictement décroissante : σ(n1) > σ(n2) > σ(n3) > ..... σ(nk) ?

Q3 Pour k prenant respectivement les valeurs 2,3,4,5 et 6, trouver des suites strictement croissantes d’entiers positifs ni pour i variant de 1 à k telles que les suites correspondantes φ(ni) et σ(ni) soient l’une et l’autre strictement décroissantes.

Pour les plus courageux : peut-on affirmer que pour tout k  > 1, on sait trouver une suite d’entiers positifs strictement croissante telle que les suites correspondantes φ(ni) et σ(ni) soient l’une et l’autre strictement décroissantes ?

 

pdfDaniel Collignon et pdfBernard Vignes ont traité le problème.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional