Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A10254. Parfait impair Imprimer Envoyer

calculator_edit.png  

Un nombre parfait est un entier égal à la somme de ses parties aliquotes (ses diviseurs à l'exception de lui-même) ; exemple : $6=1+2+3$. On en connaît actuellement 48, tous pairs, la plupart très grands. Montrez qu'un nombre parfait impair, s'il existe (on s'interroge à ce sujet depuis l'Antiquité), est décomposable en somme de deux carrés.

 

Problème paru dans La Jaune et la Rouge de février 2015

 


 

 


 

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional