Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A1843. Bienvenue à 2014
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A1843. Bienvenue à 2014 Imprimer Envoyer

calculator_edit.png  

1ère énigme
Avec les quatre opérations élémentaires +, - , * ,/ et des parenthèses mises en tant que de besoin,à l'exclusion de tout autre symbole tel que exposant,racine carrée, factorielle,... trouver les formules, les plus économiques en nombre de caractères utilisés,qui font intervenir des nombres à un seul chiffre (les concaténations sont donc interdites) et donnent un résultat égal à 2014,respectivement à partir :

1) des neuf chiffres de 1 à 9 pris dans cet ordre.Par exemple pour obtenir 101, on pourrait écrire 101 = (1 + 2 + 3)* 4 - 5*(6 - 7) + 8*9 en utilisant 21 caractères.
2) du plus petit nombre possible de chiffres prélevés dans l'ordre parmi les chiffres de 1 à 9, chacun d'eux étant utilisé une fois et une seule.Par exemple,avec 101 = 2 + (3 + 8)*9, on a utilisé les seuls chiffres 2,3,8 et 9 avec 9 caractères au total.
3) des seuls chiffres qui figurent dans 2014, chacun d'eux étant utilisé au moins une fois et autant de fois que nécessaire,4) d'un seul chiffre choisi dans l'ensemble des chiffres de 1 à 9 et utilisé autant de fois que nécessaire. On retiendra le chiffre qui donne la formule la plus économique.Par exemple, pour obtenir 101 on peut additionner 101 fois le seul chiffre 1 mais cette expression est évidemment très coûteuse avec ses 201 caractères et la formule 101 = 3*3*3*(3 + 3/3) - 3 - 3 - 3/3 écrite avec le chiffre 3 et 21 caractères est plus économique sans être optimale.

2ème énigme
Dans le système décimal, je suis un entier à quatre chiffres. Dans une certaine base b, je m'écris 3010. Dans la base b + 7, je deviens 540. Quelle est mon écriture en base b + 1?

3ème énigme
Je suis un nombre entier n. Moi-même, l’entier qui me suit n + 1 ainsi que notre somme 2n + 1 avons en commun d'avoir quatre chiffres et d'être égaux au produit de trois nombres premiers distincts inférieurs à 100. La somme des nos neuf facteurs premiers est un nombre palindrome.Qui suis-je?


4ème énigme
J'appartiens à trois suites d'entiers S1, S2 et S3 qui ont les caractéristiques suivantes:
S1 : le terme a(n) est égal à la somme de n nombres triangulaires consécutifs dont le premier vaut T(n) = n(n+1)/2.Les premiers termes sont a(0) = 0, a(1) = 1, a(2) = 3 + 6 = 9,etc...
S2 : si le terme a(n) prend la valeur k, alors a(n+1) est égal au kième nombre entier composé dans la suite des entiers naturels 1,2,3,... .On a a(0) = 1, a(1) = 4, a(2) = 9,etc...
S3 : le terme a(n) est égal au nombre de quadruplets d'entiers naturels pas nécessairement distincts {w,x,y,z} choisis dans {1,2,...,n} tels que wx + yz ? n2.On a a(0) = 0, a(1) = 0, a(2) = 9,etc...
Qui suis-je? Quel est mon rang dans chacune des trois suites?


pdfDaniel Collignon,pdfJean Nicot,pdfPhilippe Laugerat,pdfPaul Voyer,pdfPierre Jullien et pdfJean-Marie Breton ont résolu tout ou partie des quatre énigmes.

 
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional