Small Fonts Default Fonts Large Fonts

Plus de 3000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts A1. Pot pourri A1987. Les factorielles revisitées
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A1987. Les factorielles revisitées Imprimer Envoyer
computer.png calculator_edit.png  

Problème proposé par Michel Lafond

n >= 1 étant un entier naturel, il s’agit d’écrire n! comme produit de n facteurs entiers :
n != F1 x F2 x F3 x - - - x Fn avec F1 <= F2 <= F3 - - - <= Fn-1 < Fn
en rendant F1 le plus grand possible.
Ainsi :
avec 27!= 73 x 83 x 94 x 104 x 112 x 125 x 132 x 17 x 19 x 23 x 25 on a F1=7
avec 27! = 84 x 96 x 106 x 112 x 12 x 132 x 143 x 17 x 19 x 23 on a F1=8.
Essayer de trouver le plus grand F1 possible lorsque n appartient à l'ensemble {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.



Le problème a été résolu par Jean Moreau de Saint Martin,Paul Voyer et son auteur Michel Lafond.
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional