Small Fonts Default Fonts Large Fonts

Plus de 3500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Les nombres aimables Imprimer Envoyer

Les membres d'un couple de nombres entiers (a,b) sont qualifiés de nombres « aimables » si la somme des diviseurs de a (a exclu mais 1 compris) est égale à b et si la somme des diviseurs de b (b exclu mais 1 compris) est égale à a. L'exemple des valeurs les plus petites est constitué par le couple (220,284) qui a été signalé il y a fort longtemps par Platon. On connaît un très grand nombre de tels couples numériques. Une formule générale avec laquelle ces nombres sont susceptibles d'être calculés, a été découverte aux environs des années 850 par Thabit ibn Qurra (826-901).

Si p = , q = et r = où n >1 est entier, p,q et r sont des nombres premiers, alors .pq et .r constituent une paire de nombres « aimables ». Grâce à cette formule, on obtient la paire (220,284) déjà mentionnée, puis (17296,18416) et (9363584, 9437056) mais la paire (6232, 6368) n'est pas donnée par cette formule?

Existe-t-il une infinité de nombres aimables ?

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional