Small Fonts Default Fonts Large Fonts

Plus de 3500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes du mois A1634-Des entiers plaisants
A1634-Des entiers plaisants Imprimer Envoyer

calculator_edit.png  nouveau 

Un entier naturel n est appelé plaisant s’il admet un diviseur propre(1) d > 1 et si d + 1 est un diviseur propre de n + 1.Pour tout entier k ≥ 1, on s’intéresse aux k-uplets d’entiers plaisants consécutifs : n1,n2 = n1 + 1, n3 = n2 + 1,….,nk = nk-1 + 1, les diviseurs propres correspondants ne formant pas nécessairement une suite d'entiers consécutifs.
Par exemple pour k = 1, n1 = 8 est un entier plaisant car 2 divise 8 et 3 =2 + 1 divise 9 = 8+1.
Pour k = 2, n1 = 26 et n2  = 27 constituent un doublet d’entiers plaisants consécutifs. 26 est plaisant car 2 divise 26 et 3 divise 27  de même que 27 est plaisant car 3 divise 27 et 4 divise 28. 
Q1 Pour tout entier k ≥ 1, prouver qu’on sait toujours trouver au moins un k-uplet d’entiers plaisants consécutifs puis qu’il en existe une infinité dénombrable.
Q2 Sur l’ensemble des k-uplets d’entiers plaisants consécutifs, on recherche le plus petit des premiers termes n1 et l’on obtient la suite S de terme général ak .Déterminer les quinze premiers termes de S de a1 à a15.
 (1) Un diviseur propre d'un entier naturel n est un entier naturel diviseur de n mais distinct de n
Source : d’après un problème proposé par le Ghana aux IMO 2024

 

Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir. Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 

 

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional