Small Fonts Default Fonts Large Fonts

Plus de 3500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes par thèmes A. Arithmétique et algèbre A1. Pot pourri A1631. Arithmétique pour la 32ième olympiade

Avertissement

Tous les problèmes sont identifiés par un niveau de difficulté :

Très facile

Facile

Moyen

Difficile

Très difficile

Variable

 

D'autre part, les problèmes se traitent généralement à la main et sont alors repérés par l'icône

 

Pour faciliter leur résolution, l'ordinateur peut être utile. Dans ce cas, vous verrez apparaître aussi cette icône

 

Quand l'ordinateur est indispensable, l'icône figure seule.

 

Pour avoir accès aux solutions de chaque problème, cliquez sur solution.

 

Les figures et les graphes ont été réalisés grâce au logiciel Declic.

Avertissement
Open/Close
A1631. Arithmétique pour la 32ième olympiade Imprimer Envoyer
A. Arithmetique et algèbre - A1. Pot pourri

calculator_edit.png  nouveau 

On fixe un entier k strictement positif ≥ 1 et on recherche tous les entiers p,q et r vérifiant k < p < q < r tels que (p – k)(q – k)(r – k) divise pqr – k.
Q1 Prouver que pour tout entier k il y a un nombre fini de triplets distincts (p,q,r) qui satisfont les conditions de l’énoncé et qu’on sait toujours en trouver  au moins deux.
Q2 Déterminer toutes les solutions pour k = 1 (cf problème n°1 des 32ièmes IMO 1992 à Moscou)
Q3 Déterminer toutes les solutions pour k = 2.

 

Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir. Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 

 

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional