Small Fonts Default Fonts Large Fonts

Plus de 3500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes du mois A1645. Quand l'harmonique fait de l'arithmétique...et de la géométrie
A1645. Quand l'harmonique fait de l'arithmétique...et de la géométrie Imprimer Envoyer

calculator_edit.png  nouveau 


Zig parvient à repérer une progression arithmétique (PA) de 26 termes  classés par ordre décroissant dans une sous suite S  de k termes consécutifs extraits de la suite harmonique 1/1,1/2,1/3,…,1/n, …..tels que le 1er terme de PA est le1er terme de S et le 26ième terme de PA est le dernier terme de S et prend la plus grande valeur possible. 
Q1 Déterminer l’entier k, les 1er et 26ième termes et la raison de PA.
Q2 Puce remarque qu’il sait extraire de S une progression géométrique (PG) qui a un nombre N de termes. Déterminer la plus grande valeur possible de N et donner les premier et dernier termes correspondants de PG.

 


 

Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir. Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 

 

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional