D1723. Triangles inscrits dans une ellipse Imprimer

calculator_edit.png  nouveau 

Problème proposé par Pierre Leteurtre

Soient une ellipse (E),un triangle ABC inscrit dans cette ellipse et (γ) le cercle inscrit du triangle.
On sait par le grand théorème de Poncelet que tout point de E peut être le sommet d’un triangle inscrit dans E et admettant (γ) comme cercle inscrit.
On trace deux triangles A₁B₁C₁ et A₂B₂C₂ inscrits dans (E) et admettant (γ) comme cercle inscrit.
Démontrer que l’axe radical des cercles circonscrits aux triangles A₁B₁C₁ et A₂B₂C₂ passe par un point fixe quelles que soient les positions de A₁ et de A₂ sur (E)

Pour aider le lecteur à la résolution du problème, Pierre Leteurtre nous a fait parvenir l'état de ses rechecrhes: voir pdfD1723PL

 Soumettre votre solution



Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.