Small Fonts Default Fonts Large Fonts

Plus de 2500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts Problèmes ouverts A2827. Une fonction bien enracinée
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A2827. Une fonction bien enracinée Imprimer Envoyer

calculator_edit.png  nouveau 

Problème proposé par Jean Nicot

La fonction f(x) de la variable réelle x est définie par (f(x))2 = x + f(x+1)
Q1 Déterminer l’ensemble de définition de la fonction f et prouver qu’il existe un nombre réel x0 tel que f(x0) = 0
Q2 Calculer f(–1), f(0),f(1),f(10) et f(30) avec 12 chiffres significatifs.
Q3 A partir du nombre réel f(0) précédemment calculé, on considère les deux suites de nombres réels définies par les relations de récurrence un+1 = u2n– n et u0 = f(0) + 10-9  et vn+1 = v2n – n et v0 = f(0) – 10-9.
Comparer u1,u10,u30 et v1,v10,v30 respectivement à f(1),f(10),f(30).




Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional