Small Fonts Default Fonts Large Fonts

Plus de 2000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes ouverts Problèmes ouverts A815. Des combinaisons sous toutes les coutures
Les problèmes ouverts iront dans les archives quand ils seront résolus par les lecteurs ou quand ils seront restés plus de 4 mois en problèmes ouverts non résolus.
A815. Des combinaisons sous toutes les coutures Imprimer Envoyer

calculator_edit.png computer.png  nouveau 

Soient trois entiers strictement positifs a,b et c.
Q1 Déterminer le nombre maximum N d'entiers positifs distincts qu'il est possible d'obtenir en combinant ces trois entiers avec les quatre opérations élémentaitres +, ‒ , *, / et des parenthèses (..) utilisées en tant que de besoin. Par exemple : a + b + c, a + b ‒ c, a*b/c,     (b ‒ a)*c, c / (b + a), etc.....
Q2 Trouver le triplet (a,b,c) de produit abc minimal qui donne N.



Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional