Small Fonts Default Fonts Large Fonts

Plus de 2500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes du mois I133. L'arbre qui cache l'horizon
I133. L'arbre qui cache l'horizon Imprimer Envoyer

calculator_edit.png  nouveau 

Dans une grande forêt de résineux sur terrain plat, Zig est assis sur la souche d’un arbre prise pour origine. Toute la forêt est plantée d’arbres assimilés à des colonnes cylindriques dont les axes passent par les points de coordonnées entières exprimées en mètres : (5i,5j) avec i et j entiers relatifs quelconques, i ou j non nul. Dans le quadrant Nord-Est y compris les demi-axes Ox et Oy, les arbres sont des douglas de  diamètre 40 centimètres. Dans le reste de la forêt les arbres sont des mélèzes plus jeunes.
Q1 Démontrer que quel que soit le quadrant où Zig porte son regard, l’horizon est bouché.
Q2 Déterminer les limites de cet horizon dans le quadrant Nord-Est.
Q3 Un capteur de distances indique à Zig que le  mélèze le plus éloigné lui bouchant l’horizon est à 475  mètres. Calculer le diamètre des mélèzes.



Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional