Small Fonts Default Fonts Large Fonts

Plus de 2500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes du mois H160. A la chaîne et en boucle
H160. A la chaîne et en boucle Imprimer Envoyer

calculator_edit.png  nouveau 

On considère la liste (L) des cinquante premiers nombres premiers 2,3,5,….,227,229.
Q1 Prouver qu’on sait trouver dix nombres premiers distincts p1,p2,..,p10 choisis dans (L) et placés sur une même rangée tels que la somme du double de l’un quelconque d’entre eux 2pi et du suivant pi+1 est un carré parfait m2i pour i = 1,2,..,9 (i.e  2pi + pi+1 = m2i)
Pour les plus courageux : déterminer la plus longue suite de k nombres premiers distincts choisis dans (L) et placés sur une même rangée tels que 2pi + pi+1 = m2i pour i = 1,2,…,k – 1.

Q2 Prouver qu’on sait trouver huit nombres premiers distincts q1,q2,..,q8 choisis dans (L) et placés dans le sens horaire le long de la circonférence d’un cercle tels que la somme du double de l’un quelconque d’entre eux 2qi et du suivant qi+1 est un carré parfait ni2 pour i = 1,2,..,8 (i.e 2pi + pi+1 = n2i et par convention, p9 = p1)
Pour les plus courageux : déterminer le plus grand nombre possible k de nombres premiers distincts choisis dans (L) et placés dans le sens horaire le long de la circonférence d’un cercle  tels que 2pi + pi+1 = n2i pour i = 1,2,…,k avec par convention pk+1 = p1.




Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional