Small Fonts Default Fonts Large Fonts

Plus de 2000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes du mois D296. La saga des parallèlogrammes (2ième épisode)
D296. La saga des parallèlogrammes (2ième épisode) Imprimer Envoyer

calculator_edit.png  nouveau 

On considère un triangle ABC non isocèle  dans lequel les points O,I et Ω désignent respectivement le centre du cercle circonscrit,le centre du cercle inscrit et le centre du cercle d'Euler.
On trace les milieux A1,B1 et C1 des arcs BC,CA et AB qui ne contiennent pas les sommets A,B et C du triangle puis les symétriques A2,B2 et C2 de ces points par rapport aux côtés BC,CA et AB. Soit F le centre du cercle circonscrit au triangle A₂B₂C₂ .
Soit D le point de contact du cercle exinscrit du secteur angulaire BAC avec le côté BC. La droite AD coupe la parallèle menée de O à la droite IΩ au point K
Démontrer que les points O,I,K et F forment un parallélogramme.



Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional