Small Fonts Default Fonts Large Fonts

Plus de 2000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes du mois A1878. Des produits hypermultiples
A1878. Des produits hypermultiples Imprimer Envoyer

calculator_edit.png  nouveau 

Pour un entier k donné > 1, on s'intéresse à tout ensemble Ek de k entiers naturels distincts strictement positifs dont le produit est multiple de toutes les sommes de ces mêmes entiers pris deux à deux.
Par exemple pour k = 2, l'ensemble E2 ={3,6} convient car 3*6 = 18 = 2*(3+6).
Q₁ Démontrer que quel que soit k, il est toujours possible de constituer un tel ensemble.
Q₂ Trouver un ensemble E12 de 12 termes dont le plus grand est strictement inférieur à 48.
Q₃ Trouver un ensemble Ek qui a au moins 48 termes et dont la somme des termes est égale à 4802.



Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional