Small Fonts Default Fonts Large Fonts

Plus de 2000 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil Problèmes du mois A461. Factorielles en Diophantie
A461. Factorielles en Diophantie Imprimer Envoyer

calculator_edit.png  nouveau 

La factorielle d'un entier x quelconque ≥ 1 est désignée par x ! = 1*2*....*(x ‒ 1)*x
Q1 Déterminer sept entiers strictement positifs a,b,c,d,e,f et n qui satisfont les cinq équations:
n! + a2 = b2, (n + 1)! + b2 = c2 , n! + c2 = d2, (n + 1)! + d2 = e2 et (n+1)! + e2 = f2.
Q2 Démontrer que pour tout entier n > 4, il existe un entier k indépendant de n  tel que:
n!/(n - k)! + 1 est un carré parfait.
En déduire qu'il existe trois entiers a, b et c dont l'écriture utilise des chiffres tous distincts tels que a!/b! + 1 = c2

Nota: les deux questions sont indépendantes



Pour envoyer vos solutions, Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional