Small Fonts Default Fonts Large Fonts

Plus de 2500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil
Casse-tête de février 2021 Imprimer Envoyer
La gazette

diophante009Le casse-tête de janvier 2021 enregistré sous la rubrique E5901-Quatorze premiers a été résolu par Maurice Bauval,Raymond Bloch, Daniel Collignon, Maxime Cuenot,Thérèse Eveilleau, Sébastien Gourjeandé,Pierre Jullien,Jean Moreau de Saint Martin,Pierre Henri Palmade, Nicolas Petroff et Paul Voyer.

Le casse-tête de février 2021 enregistré  sous la rubrique A1743- La saga de la jonglerie des chiffres (12ème épisode) vous offre la possibilité de jongler à nouveau avec les chiffres après une longue interruption depuis le 11ème épisode.

a1743

Déterminez huit entiers à 3 chiffres chacun, un par ligne du tableau ci-contre de sorte que le produit des chiffres de chacun d’eux figure en quatrième colonne et les produits respectifs des chiffres des centaines (1ère colonne) des dizaines (2ème colonne) et des unités (3ème colonne) figurent en dernière ligne.

D4901 ‒ Pavages d'hexagones [*** à la main]
Avec n triangles équilatéraux de côté unité,on pave un hexagone pas nécessairement convexe dont les côtés ont pour longueurs pas nécessairement prises dans cet ordre : 1,2,3,4,5,6.
Q₁ Démontrer que l'entier n est toujours impair.
Q₂ Déterminer les valeurs extrêmes de n et représenter les pavages correspondants.
Pour les plus courageux:
Q₃ Déterminer toutes les valeurs possibles de n.
Q₄ Déterminer tous les pavages possibles non superposables deux à deux.
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional