Small Fonts Default Fonts Large Fonts

Plus de 2500 récréations et problèmes mathématiques !

Ce site a été créé en souvenir de DIOPHANTE, mathématicien grec, qui nous a laissé de remarquables ouvrages d'arithmétique. L'objectif est de constituer une vaste bibliothèque de problèmes mathématiques avec les énoncés et les solutions classés par thèmes et selon leur niveau de difficulté et de proposer chaque mois plusieurs problèmes à la sagacité des lecteurs qui ont toute latitude pour envoyer leurs réponses.

Accueil
Casse-tête de janvier 2021 Imprimer Envoyer
La gazette

diophante009Le casse-tête de décembre 2020 enregistré sous la rubrique E6910 a été résolu par Maurice Bauval,Raymond Bloch, Dominique Chesneau, Daniel Collignon,Thérèse Eveilleau,Fabien Gigante,Pierre Jullien,Pierre Leteurtre, Jean Moreau de Saint Martin et  Pierre Henri Palmade.

Le casse-tête de janvier 2021 enregistré sous la rubrique E5901-Quatorze premiers permet d'aborder l'année en douceur.

Il s'agit tout simplement de placer tous les entiers de 1 à 14 le long de la circonférence d’un cercle de sorte que la somme et la différence (positive) de deux nombres adjacents quelconques soient l’une et l’autre des nombres premiers.

D4901 ‒ Pavages d'hexagones [*** à la main]
Avec n triangles équilatéraux de côté unité,on pave un hexagone pas nécessairement convexe dont les côtés ont pour longueurs pas nécessairement prises dans cet ordre : 1,2,3,4,5,6.
Q₁ Démontrer que l'entier n est toujours impair.
Q₂ Déterminer les valeurs extrêmes de n et représenter les pavages correspondants.
Pour les plus courageux:
Q₃ Déterminer toutes les valeurs possibles de n.
Q₄ Déterminer tous les pavages possibles non superposables deux à deux.
 
RSS 2.0 Our site is valid CSS Our site is valid XHTML 1.0 Transitional